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Crack limiting velocity
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We address the question of how a dynamic crack can approach zero velocity. Continuum theories usually do
not explicitly include the radiation of energy away from the crack tip. We show that its inclusion leads to the
prediction of crack velocity that increases smoottilyough sharply from zero. We then connect an older,
simple model of crack propagatidfiatoms on rails”) to a recently proposed single-particle model and show
how the disappearance of lattice trapping leads to a smooth low-velocity [B1i063-651X%97)00307-3

PACS numbg(s): 46.10:+z, 62.20.Mk, 61.72.Bb, 83.50.Tq

[. INTRODUCTION oped with which one could address the underlying mecha-
nisms of some of the dynamic crack physics without invok-
Recent discrete lattice and Barenblatt models of dynamiing the very complex machinery of the real thing. Here we
brittle cracks raise the question whether a crack velocitywill present two additional simple discrete models that can
smoothly approaches zero as the load is decreased from large studied completely analytically, one for each geometry.
values to the Griffith poinf1—3]. This problem is indepen- These results will be presented in Secs. Ill and IV. A con-
dent of crack behavior at the other end of the scale, whereluding discussion is presented in Sec. V.
the upper limit of crack velocity appears to be associated
with instabilities caused by crack branching and dislocation
formation[1,2]. This low-end behavior is as interesting as ||. CONTINUUM LIMIT AND BOUNDARY CONDITIONS
that at the high end, however, because the standard con- .
tinuum solution for a steady-state moving crgel makes A. Strip geometry
definite predictions about it. If a crack in a lattice exhibits |n the first type of boundary condition, used extensively
unpredicted unstable behavior at the low end in contradictioyy Marder and Gross, in both its theoretical and its experi-
to the continuum results, then one must explain how and whynental implementations, the system is a strip of finite width
the discrete lattice effects can be so important. and infinite length with a semi-infinite crack running down
This paper addresses cracks in lattices, where it will bets middle (on thex axis). The strip is loaded on its edges in
assumed that a unique cleavage plane is forced by the surfacgxed grips.” That is, the edges of the strip ==L are
energy anisotropy of the lattice. Thus, because they assumgisplaced by amount 2u, everywhere(The factor of 2 has
amorphous media with isotropic surface energy, the works oo particular significance and is chosen for consistency with
Ching, Langer, and Nakanish8] and Lund[5] are not di-  |ater discussion.This creates a constant strain in the strip far
rectly relevant. ahead of the crack tip for large positive It is usually as-
Expectations about the behavior of dynamic cracks argumed that the strain far behind the crack is fully released
dominated by the boundary conditions of the problem.and that the material there is again at rest for large negative
Marder and Gros$l] work in the strip geometry, whereas x_ |t is easily seerf4] that this system has only two steady-
the large-scale computer simulatiofy assume effectively  state velocities: zero and the Rayleigh speed. Liu and Marder
“infinite” systems where the crack tlp is not in communica- [7] have shown further that if one sets up such a system at
tion either with its other end or with boundaries in the sys-the Griffith load and then at time=0 increases the load
tem. The continuum predictions for these two geometries argjightly, the crack slowly increases its velocity from zero to
quite different and will be summarized in Sec. Il, where wethe Rayleigh limit for all loads greater than the Griffith load.
also present results for a continuum version of the oneThese solutions, however, are built on the proposition that
dimensional(1D) discrete model of Marder and Grogkl.  the material far away from the crack tip, either ahead or
However, in each case, we are left with questions about howehind it, is at rest.
the atomiCity of the prOblem can eXplain observed deviations The reasoning iS as fo”ows_ Each Vertica' e|ement far
from the continuum predictions. ahead of the crack contains a strain energy deriityper
The analytic description of dynamic fracture is quite ab-ypit length along the center line given by the load. As the
struse and simula_tions of the “infinitg” system require ex- crack grows by one atom spacing, the elastic energy of one
tensive programming and computer time. To surmount somM@ertical row of atoms through the strip is available to break

of this barrier to understanding the physical picture, it is ouine honds. Thus Griffith equilibrium is set by the condition
purpose here to extend the kind of thinking already begun in

an earlier papef6], where a very simple model was devel- E.=2%. (D)
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Since the usual assumption is that the system relaxes corimit of small velocities. We first suppose that the static
pletely behind the crack with no time-dependent displaceerack has a smooth solution given by the functidiix/w),
ments, there is no way for excess energy to be absorbed amhich is a functional of the nonlinear force lawP{f(y)}.
the crack has no stable velocity greater than zero. [The force function is obtained, of course, if the displace-
But these boundary conditions, as stated, are inconsistentent function is known, by direct substitution into E).]
because if the load is above the Griffith value, then the exThe displacement function is written so that it scales with a
cess energy is available to generate waves betand in  parametew, which is interpreted as the width of the Baren-
front of) the crack. Physically, the material just behind theblatt cohesive zone of the crack.
crack tip that is released after bond breaking will accelerate At small velocities, the moving crack must be very close
toward its equilibrium position and kinetic energy in the to a rigidly translating static crack and we thus assume a
form of a wave will be generated to reflect back and forthsolution of the form
between the fixed boundaries yt =L, with excitation of
associated Rayleigh waves. Thus any excess energy can be 0
absorbed in these waves and again, from energy conservation u(x,t)=u
alone, a load-velocity law can be a smooth function of the
load and go to zero smoothly as the load goes to the Griffitwhere the second term is a perturbation from ¢(keown)
load. This demonstration does not prove that the velocity lawiniformly translating static crack. After substitution into the
is smooth in the vicinity of zero, only that energy conserva-equation of motion and remembering th&tis a solution of

t
+ul(x,t), (4)

tion is consistent with it. Eq. (2), u' satisfies the equation
But one can go further with a continuum version of the
1D discrete strip model introduced by Gross and Mafdgr o?ut L 1 Aut vrd
In this simple model, we assume two infinitesimally thin stiff Z IO = ®)

foils connected to one another with a nonlinear stress func-

tion f(Uy) and to substrates above and below, reSpeCtiV8|y\NhereC2:A/p_ In this equation an expansion bfis made,
with linear springs, such that each foil satisfies the following

equation under time-independent static conditions: (u°)
f(u)~f(u®)+ut (6)
420 du®
_ 0 y _,,0
fluy) +A gz TB(2Up—uy), @ wheref(u®) anddf(u®/du® are known functions ot once

the static solution is known. Theg(x) in Eq. (5) is the
where A is the stiffness coefficient in a foil anB is the  collected set of terms linear in* resulting from the substi-
spring constant connecting the foil to the substrate. A crackytion in the equation of motion. Equatid@s) is a homoge-
is assumed tO exist between the two foils, so that under fixeleous wave equation with a curious dispersion relation in the
grips load,u(x) is the vertical displacement from the equi- regions both far ahead and behind the crack and thus repre-
librium posmon relative to the centerline of the configura- sents the radiated waves generated by the moving crack. In
tion, of the upper foil as a function of the distance along thethe core, the source of the radiation is the term on the right-
strip anduy is the displacement of the upper foil from its hand side in Eq(5), which contains the coupling to the
equilibrium position relative to the centerline of the configu- translating cracku® through its second derivative. Since this
ration atx=+o. Since the problem contains modisplace-  source term is proportional tw(c)?, the radiation is a small
ment, henceforward, we drop the subscsipin theu’s. To  perturbation at small velocities, as desired. Of course, one
the left of the crack, the bonds are fully broken,fsgoes to  must allow for special force laws for which the moving crack
zero atx= —o0 and the foils relax to their equilibrium posi- is a soliton, wherein no radiation is generated, but if they
tion relative to the substrates. The centerline is a line okxist for this model, they are unusual cases and not consid-
symmetry in the problem, so the lower foil has a displace-ered further.
ment of —u®(x) and atx= + far to the right of the crack There is a problem with Eq5), which is a special feature
the upper substrate is displaced relative to the lower by thef the 1D strip crack tied to a substrate. The terng{ix),
distance 4, from their equilibrium separations without load. which derives ultimately fronf and B in Eq. (3), gives a
(This assumes that the “spring” constant between the foilsdispersive character to the waves such that the wave group
for small displacement is half as stiff as that between therelocity for very long waves goes to zero. This means that a
foils and the substratgsFor the time-dependent moving crack with finite velocity would be supersonic, relative to
crack problem, the equation of motion for one of the foils issome very long wavelengths. Thus, for the physical picture
to be valid, the moving crack must generate radiation with
J*u J°u wavelengths much shorter than the critical wavelength where
0= f(u)+A X2 +B(2up— u)_pW’ 3 the wave and crack velocities are equal. The effective fre-
guency of a radiated wave will be given by the ratiav, so
where nowu(x,t) is the time-dependent displacement of thefor the physical picture to be valid, this ratio must be suffi-
upper foil andp is the mass density in a foil. ciently high. The catastrophe is avoided in the true limit of
We do not attempt a full-scale solution for this nonlinearv —0 because of the factov(c)? in the driving term on the
crack, which would perforce be numerical. Rather we finesseight-hand side of Eq(5): thus, in that limit, no radiation is
the analysis by making plausible physical assumptions in aemitted. Having pointed out the problem, we ignore it in the
attempt to gain information about the velocity law in the following by tacitly assuming that the core is always sharp
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enough. The problem will also not be a feature of any systenerack can exist, but we believe these are more plausible for
where the strip is sufficiently wide and properly 2D. the crack in a discrete lattice and return to a discussion of
An equivalent way to consider the problem thus posed ighis point in the Conclusion.
to view the moving crack as generating a localized region of The reason for going through this 1D strip case, even with
kinetic energy in its core. A part of this energy will move its inadequacies, is that the physics that leads to the well-
coherently with the crack, but part must be radiated in nonbehaved limit at low velocity should be instructive in other
soliton cases. If the system is in steady state, then the radig@ases where the analysis is even more intractible. That is,
tion rate from the moving core must be a fixed fraction of thewhen one can build first-order solutions out of the rigidly
total kinetic energy in the core. Since the kinetic energy oftranslating static crack, then the velocity law should be well
the rigidly translating crack ignote there are two foi)s behaved in the zero-velocity limit and have the general char-
acter displayed by Eq10). We have pointed out that viola-
® ., pv? (= [du®(x) tions are expected if the crack can possess storage modes
T:Pf udx= " dx X, (7 when it moves, but we believe these are probably not a fea-
ture of the continuum.

2

—o0 — o0

the energy balance at the crack cdire the Griffith sensg

becomes B. Infinite 2D geometry
) In the second boundary condition, the crack is assumed to
_ v be long(or even semifinite in lengirand to be embedded in
Ec=2y+C(W)—>. (8 - . :
w an infinite medium. In steady state, the load must be imposed

in such a manner that the crack experiences a constant ap-
HereC is a constant, which depends on the form of the forceplied K field in the static limit. For actual cracks, these con-
law, but the major dependence @n has largely been re- ditions may be difficult to achieve, but they can often be
moved by means of the assumed way the static crack scalepproached for finite lengths of time. It is required that there
with w. E. is the elastic energy density in the loaded andbe a time interval during which no communication is pos-
stretched system far to the right of the craEk.is given by  sible with the other end of the crack or with boundary sur-
the relation faces. Also, any additional crack growth during the interval
must be small compared to the initial crack length. Limiting

) times are set by the time for sound waves to reach the crack
Ee=5BuUg 9 tip either from the other end of the crack or from the bound-
aries. But even if these conditions are difficult to achieve in

under the assumption noted above that the spring constafitnulations or in experiment, mathematically, these bound-
between the foils is half that between the foils and the sub&Y conditions lead to a well-posed problem, which has re-

strates. ceived much attention. See the review by Fre{#id
When Eq.(8) is inverted, the velocity law for the crack The result of the analysis is that the dynamic driving force
becomes on the crackg is nearly linearly related to the crack driving
force that would have been calculated from the loads for the
E.—2y crack if it were statiaj,
"TWNTCw) 10 G=(1-v/c)Go, (1)

This relation is obviously only valid in the low-velocity con- wherev is the (steady-statevelocity of the crack ana is
tinuum limit for steady-state velocity and yields a nonsin- the Rayleigh surface wave speed in the system. This linear
gular behavior in the vicinity of =0. It shows a square-root relation is not strictly valid, but as an approximation, is
dependence on the excess load over the Griffith value. tgood enough” for our purposes. Further, in this same sys-
obeys all physical requirements in that for very wide cohe-tem, if the crack is in steady state, th@rs a constant of the
sive zones, the crack produces little radiated endévgyen  motion and thel integral for the crack tip is independent of
thew dependence of is not too drastit Also, nearv=0, the path of integration. This means tigais the energy that is

the slope of the velocity function is very steep because thabsorbed at the crack tip by nonmechanical means, presum-
crack must pick up significant velocity and kinetic energyably by breaking the bonds there. Thus the steady-state dy-

before radiation can be important. namic brittle crack also satisfies the Griffith relation
We note that although the presentation here is quite gen-
eral, the physical assumption is made that a true steady state G=2v, (12

is achievable. It is this assumption that makes it possible to

write the generalized Griffith relation, and if no such solutionwhich, in terms of the experimentally determined Id2gdis
of Eqg. (5) is possible, then the whole physical picture of

uniformly moving cracks breaks down. However, the general v_ 1— 2y (13)
form of Eqg. (5) makes one optimistic that steady-state solu- c Go(P)"

tions do exist for a wide class of force laws, and for all these

cases, then a velocity law of the for(d0) is valid. We  For positivev, this relation shows that the velocity starts at
believe the most probable violation of the steady-state crackero for Go=2y and asymptotically builds t@ for large

assumption would arise if storage modes for the movingvalues ofG,. SinceGyxP?, the velocity curve is an increas-
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ing quadratic hyperbola as a function of the load. Thus, as
the load drops from large values to the Griffith load, the ‘ . . . . .
velocity goes smoothly to zero, according to the continuum

theory with the “infinite” system boundary conditions. . ‘ . . ‘ .

The physical content of the solutions for either set of
boundary conditions is straightforward. In the quasistatic . .
limit, as the crack grows, it absorbs energy from the loading ' d ‘ ‘
systemg, in just the amount necessary to break the bonds,
so the Griffith relation is simply a statement of energy con-
servation. Likewise, in the dynamic case, as the crack grows, . ‘ ‘
new material at rest ahead of the crack must be accelerated to ’ ‘ q
an increasing kinetic energy behind the crack. In the strip
case, waves are generated by the breaking bonds at the tip. In ’ ‘
the infinite case, the crack opening behind the crack in- ‘ ‘ ’ '
creases from the tip with distance &%, so as the crack
moves, more and more material is accelerated and the energy ' ‘ . . . ‘
of the crack displacement field continuously increases. In
either case, thi.s energy must Com? ultimately from the load FIG. 1. Schematic of a crack in a uniaxially strain@d the
system. Thus, In'the case of a.mo"".‘g qrack, the load SySter\pertical direction triangular 2D lattice, which is six close-packed
must supply a displacement T'eld kinetic energy as well 8%ows of atoms from top to bottom. The crack-tip atom is unshaded;
bond breaking energy, and this means that additional load ig, o pond with its neighbofshown moving down and to the right
required to move the crack at a finite velocity over and abowv

T ; . o . . $as just broken, sending the crack-tip atom up and to the right. Its
the Griffith load in the continuum limit. Thus this additional pong with the next atom in line will be stretched and broken in time

dynamic energy is a smooth function of the crack velocity, a, = so that this “iceskating” advances the crack one nearest-

least for velocities much less than the Rayleigh speed, whefigsighbor distance, in a time 2,c.y, With a steady-state crack
shock and relativistic effects are expected to oc¢lihis  velocity of ve;ack="0/2tprea.

argument is exactly that of Mott in his early treatment of the
moving crack[8,4], which is valid in the low-velocity re-

gime) the sense that the strain is still increasing above the Griffith

load after the crack starts to run, the initial velocity is quite
high and suggests that the crack resists motion at near zero
C. Discrete lattices velocity. Indeed, if the strain rate is insufficient, the crack
. . velocity is unstable in the sense that the velocity surges to a
These continuum results are to be compared with the re- y y surg

sults for the analytic solutions given by Marder and Grosghlgh value and then back to zero, with complete arrest of the

[1] and to molecular-dynamics simulatioig,9—13. We crack. This behavior is suggestive that low-velocity crack
consider first the strip ' ' advance is unstable, although these simulations require fur-

The discrete 1D strip model developed by Marder anoIher study with a variety of loading rggimes near Griffith in
Gross is the most transparent case to consider and the resgfder to explore adequately the stability of the crack at low
for the 1D bond snapping model is that all velocities in theVelocity. Thus, agair(but with less confidenggthe lattice
vicinity of zero are forbidden(In the bond snapping force results do not follow the continuum predictions.
law, the force functiorf used above in the continuum analog ~ The most important difference between the continuum
becomes a sharp saw tooth with infinite negative shope.and lattice descriptions is the existence of lattice trapping in
There are two reasons for this. First, velocities that have &e discrete case. Thus we will be interested in learning how
negative slope as a function of load are unstable and ndattice trapping effects might bear on low-velocity instabili-
allowed. Second, if the solution for small velocity is exam-ties. In particular, the analytic models of Marder and Gross
ined carefully, it is found that the crack tip bond oscillates[1] assume bond snapping force laws that lead to very high
from a bound to a broken state, which is inconsistent withlattice trapping, which might reasonably be expected to play
the assumed solution. The velocity must build to a significant role. However, the large-scale simulations of Zletal.
fraction of the Rayleigh velocity before the solution becomeg2] use much softer force laws, with lattice trapping loads
regular. This solution for the discrete 1D strip model is in-that are only a few percent of the Griffith load.
consistent with the continuum solution obtained above. The
shapping bond solution _is suffici_ently singulgr relative to the . A SIMPLE LATTICE STRIP MODEL
smooth Barenblatt solution that it is impossible to make one
case the limit of the other. But one suspects that the singular Holian, Blumenfeld, and Gumbsdlé] have developed a
character of the snapping bond release is important, and thimple version of a strip crack with only a small number of
aspect will be explored in Sec. Ill. atom rows(4,6,8, . . . ; seeFig. 1. The idea is if the strip is

How about the infinite system case? Zhetial.[2] show  very narrow, then the crack degenerates into “pure core,” in
that when the crack system is loaded with care, the velocityvhich case only a few atoms are involved in crack growth,
builds quickly to a significant fraction of the Rayleigh veloc- and the analysis is vastly simplified to only a few pairs of
ity and runs smoothly for a long distance before it finally atoms. Here we take this idea one step further, to the stage
becomes unstable. Although these results are incomplete inhere one can write down a fully analytic solution without
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located aty =3(1+ €)/2. Thus, in terms of vertical displace-
mentsy; along the chain, the force on atans now given by

fi=¢d'(L+e—yi)— o' (1+et+2y)+B(Yiz1—2YitVYi-1).
(15

The equation of motion is therm(d?y;/dt?)=f, for
i=0,+x1,+2,....

We can introduce a mirror-symmetric crack of length
2L+ 1 by specifying that particles= —L to +L have dis-
placementy;= ¢ and for all othersy;=0. For all particles

FIG. 2. Schematic of a square 2D lattice with a crack. Theexcept L and L+1, the force is zero, assuming that
lattice points are allowed to displace only in the verticaladirec-  ¢'(1+3€)=0 (broken bond between mirror-image part-
tion (“atoms on rails”). The force laws are composed of nearest-nerg; f, = —Be andf, . ;= + Be. (By an iterative relaxation
neighbor stretching forces and nearest-neighbor bending bonds ggocess, we can make the crack tip assume an equilibrium,
given in the text. The crack is formed by cutting the stretchingzero-force initial configuration. However, for a dynamic
bonds on the cleavage plane frote-— L to X=+L and nonlinear  crack moving at a steady-state velocity, this nonequilibrium
_bonds attached to the Ia_st cut bond. The_ force in the nonlinear bo”@'rack-tip force field is probably not too far from reality.
is f and the forces loading the crack at its centerfare We can now propose a single-particle Einstein model for

. L . the steadily propagating crack. By this we mean that we can
appealing to the full soph|st|_cat|on of the anaIyS|s mvokeq bYcalculate the steady crack velocity by assuming that the
Marder and Grosgl] for their 1D model. Since the physics cracktip atomL+1 moves under the influence of its fixed
of such simple models is so transparent and yet still Coma'nﬁeighbor in the row above and its immobilized neighbors

the essence of the behavior of the more complex systenpqaping L) and forward [ +2). Thus the force on the Ein-

they are worth pursuing. In particular, we will develop a giain atom [+ 1) is (dropbping the atom number for simplic-
prediction of the crack velocity in terms of the bonding at theity) t+1) s (dropping P

tip.

In order to connect well with the model in Sec. IV, we Y Y _
outline a simplified model for 2D fracture, namely, “atoms [=¢'(1te-y)=¢'(1+et2y)+B(e-2y). (16
on rails,” where the atomic motion is restricted to be or-
thogonal to the crack planéine in two dimensions The
atoms are placed on a rectangular lattisbown in Fig. 2
and labeled by the integeérin the x direction (crack propa-
gation direction; the lattice constant is unigndj in they
direction(applied load or strain direction; the lattice constant
is 1+ ¢, where € is the vertical strain in the lattige The 1
positions of atoms in the vertical direction are denoted by
Y;,; and displacements of atoms from these rectangular lat-
tice sites are denoted by;;. The compressive nearest- ) . . )
neighbor interaction between atoms in the vertical directiorl’ We linearize the potentiad such thaté’(1+y)=y, then
is characterized by a central pair potential )
G(|Yi;=Yij+1); for simplicity, we set¢(1)=0=¢'(1) f=—(3+2B)y+Be=—w(y—VYo); (18)
and ¢"(1)=1 (in tension, we can impose a discontinuous
snapping-bond potential or a smooth cutoff, if we choose hence
There is no motion in the& direction, but a linear bending

Sincey(t=0)=0, the force on the atom is initially upward:
f=Be. We record the time, ., it takes to break the bond
between the Einstein atom and its mirror image; the crack
will then have advanced by one lattice spacing, so that the
crack velocity is

Ucrack:tb_k- (17)
rea

force is applied between nearest neighbors with the same w?=3+2B,
value of j, with bond-bending force consta®. Thus the
force on atom,j is given by B
, , Yo=3i2B € (19
fii=o (IYij=Yijel) =" (Yi ;= Yi 1)
+B(Yis1)— 2V T Yi1))- (14) At the critical lattice-trapping strair.,;;, the bond be-

tween the Einstein atom and its mirror-image partner is bro-

We can simplify the problem by imagining that the crack ken when the maximum interaction rangg. is
propagates in a strip four rows high, where the top and bot-

tom rows of atoms are fixed and the middle two rows are free 2(2y0) €= (1 —1) 3+2B
to move. By assuming that the motion of these two rows is max= = €crit Yo) = €erit= (Imax™ 1) 3776 -
mirror symmetric about the crack plane, we can reduce the (20)

crack propagation problem even further, namely, to the dy-

namics of a one-dimensional chain. Atomsare located The Einstein model for atoms on rails predicts a zero steady-
above the mirror planeY(=0) at Y=y;+(1+¢€)/2, with  state crack velocity for strains below this lattice-trapping
mirror image particles at-Y;, and fixed neighbors above, value; for strains just above this, the velocity starts at
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1 [3+2B IV. A SIMPLE INFINITE LATTICE CRACK MODEL
Verit=—5 =0l 7= . (21 . . " .
712 T In this section we revisit the atoms-on-rails model of a

crack moving in an infinite system. We are not able to de-
The Griffith straineg for a systemw rows of atoms wide  velop a fully dynamic solution, but rather show that one can
is obtained from equating the elastic strain energy far in frongonstruct a lattice model that has zero lattice trapping and
of the crack to the energy of the relaxed system with a brogemonstrate that such a crack has a smooth transition from
ken bond across the cleaved surface far behind the crack tipero to small finite velocities. We do this by showing that it

is possible to choose a special set of bonding forces at the

_ CTmax—1 . crack tip, which leads to the desired crack property. The
(W=1)$(1+ €)= ¢(Iman —€c= W—1 (harmonig model is based on an extension of earlier work on quasistatic

cracks analyzed by lattice Green'’s functiddg]. The nota-
€crit 31T2B tion is the same as in Sec. IIl; however, the lattice is infinite
T ee 37 GB\E (for w=4). (22 iy both dimensions. The atoms are on the square lattice sites
denoted by ,j) with i andj integers. The crack is con-
For strains that are not too large compared to the Griffithstructed by cutting the bonds crossing the cleavage plane
value, the above harmonic analysis can be extended to obtaetween the planes,0) and {,— 1) with the crack tipglast
the crack velocity as a function of strain. The motion in thecut bond at (x=*L). See Fig. 2. The lattice is connected by

harmonic well can then be written as the same linear force law as before with both stretching and
bending springgdEgs. (14) and (18)] with the stretching
y(t)=Yyo(1—coswt), (23 spring constant chosen to be unity for convenience. The
that crack is loaded by external forcesF exerted on the atoms
S0 tha facing one another across the cleavage plane=al.
w Nonlinearity is introduced into the problem by reconnect-
Ucrack™ —emTrq — — . (29 ing the last pair of broken atoms at the crack tip with a
€os [1—(rmax—1—€)/2yo] stretching bilinear force law of the form
In the triangular lattice, this single-particle Einstein model —f =2y, yL<V° (269

exhibits two phases in the forward motion of the crack: first
a movement toward one side of the crack and then a move- 0 + 0
. ) L —fi=—"fy— —-yY), >y >y 26b
ment toward the other side, hence the name “Einstein ice- L o= kL=YD, YTy (26b)
ska’ger” model._The analysis proc_eeds similarly to the modelNhereyL is the vertical displacement of the atom 4t,@)
outlined here in the square lattice, where we have transsg it is assumed that thevertica) displacements in the

formed the bond-breaking motion into a single MIror- | ice are mirror symmetric across the cleavage plane every-
symmetric phase that is perpendicular to the crack propagayhere. Thus, from Eq(14), the linear part of the stretching

tion direction. The result for the triangular lattice is force on the atom at the crack tip due to the reattached bond,
in the two-index notation of the 2D lattice, is given by
Ucrack _ 4 @25  ~f=(YLo=Yi,-1)=2yi 0=2y., which explains the factor
Cs 3003_1(5_4\/566/6)’ 2 in Eq. (269. Similar considerations apply to the release

part of the force, wherg* >y, >y°. The linear form of the
where et/ eg=2/\/3 andv i /cs=4/3m=0.424 (s is the  bending bonds is not affected by the crack, of course.
shear-wave speed in the triangular lattice, which is also very Analysis of the cracked lattice proceeds by means of the
close to the Rayleigh-wave speed lattice Green'’s functions that have been worked out for this

The conclusions we get from these simplifications oflattice [14]. Since we will only use applied load forces ex-

steady-state crack propagation &tethere is lattice trapping erted as vertical dipoles on nearest neighbor atoms, instead
in narrow strips, and2) the velocity quickly jumps from of the Green'’s functions, we define the related response func-
zero to a sizable fraction of the shear-wave or Rayleightions for the cracked lattice as follows. The response function
(surfacg wave speed. Numerical modeling is required forg;; corresponds to the displacement at atom positigh) (on
anharmonic interactions, and the result is a reduction of théhe upper cleavage plane for a point force acting at the po-
crack speed, even for anharmonic systems with sound speesion (j,0) on the upper cleavage plane in a positiveli-
identical to those of their harmonic-system counterparts. Theection and an equal negative force at the atom on the site
reduction comes about because of the softening of the effegust below it on the lower cleavage plane at€1). It is
tive force constant in the expansigheyond the attractive necessary to define the response functions only for the atoms
minimum of the pair potential With increasing strain, over on the upper side of the cleavage plane at positig) (
and above the Griffith value and the somewhat higher latticewith these response functions for the system, if a load dipole
trapping value, the harmonic-system crack velocity quicklyis applied at the center of the craEkand a second bonding
approaches the shear-wave speed, while the anharmonic syfipole forcef is applied at the atom pair located lat(see
tems show much more gentle variation with increasingFig. 2), then the response of the total system can be written
strain. This feature too is a result of the softening of thein terms of the displacements and forces acting on the atoms
attractive forces in expansion. All in all, these simple modelsat x=0,L:
of steady crack propagation contain significant insight into
the physics of dynamic brittle fracture. Yo=0ooF +9o.f, (273
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A the atom at. + 1 reachingy®. Thus, as the system progresses
from 1 to 2, the crack grows from one lattice site the next.
Such a cracked lattice has a flat response curve and thus
1 2 exhibits zero lattice trapping. This condition is obviously a
stringent one, which will be analyzed below. In passing, we
note that if the atom dt is in the flat portion of the force law
and the other conditions are also satisfied, the Griffith con-
L dition for the crack will be satisfied.
The (total) energy changes that occur when the crack
grows from state 1 to state 2 in Fig. 3 is given by
L+1

2
5E=fl Fd(2yq) —FA(2yq), (28

where the first term is the work done by the external force as
it displaces the atom pair at the center of the crack. The
Yo second term is the potential-energy change in the load sys-
tem that supplies the load. If the response of the system is
FIG. 3. Two straight lines through the origin, corresponding toflat from state 1 to state 2, a_s drawn in Fig. 3, then the energy
the response of a fully linear lattideo nonlinear bondgfor cracks ~ changesE=0 because the first term exactly cancels the sec-
of half lengthL andL+ 1. The ordinate is the loal applied to the ~ ©Nd. Thus a flat response from 1 to 2, defined as a state of
center of the crack and the abscissa is the displacemeaf the ~ Z€ro trapping, is also a state where there are no atomic scale
atom at the center of the crack. If the atoms have a bilinear forc€xcursions in the energy of the system during quasistatic
law, then for a crack of half length, as the bond at the tip extends, crack growth, an essential physical attribute of the zero trap-
it reaches the limit of its linear portion 3 at the point in the  ping system.
diagram labeled 1 and further extension occurs on its “back side.” From Eq. (27b), dy, =g, (dF+g,, df=g, df. (dF=0
When the bond at the tip is extending on the back side, the responsehen the response is flatFrom the force law(26b),
function is assumed to be flat, until the bond finally breaks at thed f/dy= « and
same time as the response curve meets the linear lattice function
again forL+1 at the point labeled 2. 1

K— —.
gL

-

(29

yL=0oF+ou.f, (27b) L
Although the criterion(29) ensures that the response of

= + f. 2709  the system is flat, it must be supplemented by a self-
Yerr=Oead + 0L (279 consistency condition that the force law “hands off” the

Figure 3 is a graph of the displacement of the center aton§Or® atom from one site. to the next such that th(_are is always
of the crack as a function of the load forge As the force ©N€ and only one atom in the release or “back side™ portion
F is increased from zero, the cracked lattice responds lin®f the force law at all t|+mes. That is, the atomlareaches
early, as shown for crack length But when the atom dt the displacemeny, =y at the same time th?r atom at
reaches the critical valug?, according to the force law, it L+1 reaches the displacemeyt,;=yo. Sincey s de-
begins to release and the response of the system chang®ed from +the force Iaw+by—f=0=—fo— <(y" ~Yo)
abruptly. The figure shows a flat response, but in general thg 2Yo— k(Y —Yo), then y"=(x+2)yo/«. Then, from
slope will be some nonzero value, depending on the crackd: (27D, and sincef =0 at the point where the crack moves
length and the value ok. We define the condition of zero from one site to the next,
lattice trapping to be that shown, with the zero slope. The
second linear line through the origin corresponds to a linear yt=
cracked lattice of length +1 and we assume that the forces K
at the crack tip act in such a way that exactly when th
horizontal line meets the response line ot 1, the force in
the bond atL goes to zero and the force in the bond at v —
L+1 is at the critical valuefy, where the bond begins its Yir1=Yo=Ouaad 3D
release phase. Thus, as the crack grows from one lattice pgshere we have again used the fact thiatO at the point
sition to the next, it always has exactly one atom at the tip invhere the crack moves from one site to the next. Solving for

its “core,” defined asy™ >y>y°. For this assumption to be F from these two equations and substituting kofrom Eq.
valid, as the crack grows from one atom position to another(29) we obtain the final result

the crack tip atoms must smoothly execute a “dance” along

Kk+2

Yo=0ioF- (30

eLikewise, from Eq.(270 we have

the force law so that as the atomlat 1 reaches the critical 1/ 9.0

valuey, the atom at. must simultaneously reach the next 9LL=§ ngO_l : (32
critical displacemeny™. In the figure, the state labeled 1 ’

corresponds to the atom ktreachingy®, while state 2 cor- This condition is written in a form to emphasize the factor

responds to the same atom reachjiigand simultaneously g, o/d.+1,0, Which is always greater than 1. Physically, the
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ratio must be greater than 1 because the Green’s-functiomuch better behaved than that for the strip.
elements are proportional to the displacements for any atom In the two different geometries, we have introduced two
in the linear cracked lattice before the nonlinear bonds argimple lattice crack models where the atoms are free to move
reattached. That the crack closes smoothly at the tip meanshly in the direction normal to the crack plariatoms on
that this ratio must be greater than 1. rails). In the strip, the lattice contains only two rows of mov-
We find that from direct calculations of the various aple atoms, with the crack running between the two rows.
Green's functions, Eq32) is identically satisfied for all val- - Analytic results are possible for bond-snapping linear force
ues of the bending spring constditUnfortunately, we have a5 and the velocity is nonzero only above a critical veloc-
not been able to deduce this remf_;\rkable result analytlcall}fy' which depends on the lattice trapping level. For fully
from the form of the Green's functiorfd4]. But the result ,,hjinear force laws, numerical results are easily calculated,

implieg that self-consisten_cy is automatically sati_sfied if th hich show that as the lattice trapping is decreased, the criti-
back side of the force law is set so that the force in the bon al velocity also decreases towards zero. Thus the critical

at L goes to zero when the bond htt 1 is stretched to velocity observed previously in strip models is purely a func-
2y,. (The factor of 2 reflects the antisymmetry of the dis- . y ved previously P IS pure’y
tion of the lattice trapping, and as the trapping is decreased,

lacements below the crack planhe. . . ;
P In summary, in such a syst%mh a crack can grow smoothl}‘z_:e crack reverts to the behavior predicted by the continuum
i ' odel.

from one atom spacing to the next without any energ o i i
changes except those that smoothly feed energy from the !N the infinite lattice, we have shown that with the same
loading system and the elastic regions of the lattice intgtoms on rails it is p_osmble t_o find a bilinear force Iaw_thf'it
breaking the core bond. No additional energy is generated ifas strictly zero lattice trapping and that as the load is in-
this system. One could use the Mott approach to derive afreased above the Griffith value this lattice again exhibits a
approximateK/v law in the low-velocity regime, as we did Smooth increase above zero velocity. Thus, in both cases,
in Egs.(5) and(6). Such a crack would grow smoothly from any critical velocity observed is associated with lattice trap-
zero velocity at the Griffith load. We note that for a crack ping.
loaded a finite increment over the Griffith load, the smooth The paper addresses the problem of the steady-state ve-
zero trapping property begins to break down, because thiecity of a crack and leaves the question of how a crack that
construction is valid only exactly at the Griffith load. Above is initially at rest might achieve its steady state if there is
the Griffith value, some additional energy is dumped into theattice trapping. In this case, the crack must be overloaded
lattice over and above that necessary to move the zergbove the Griffith value before any state of motion is pos-
trapped crack. But since the trapping energy increasegible at all. This is the problem so aptly dubbed “starting the
smoothly with the load, nothing dramatic happens. Thecrack” by Eshelby[15]. According to the continuum solu-
K/v law should merely turn up a little above the continuumtions, we would expect, if the crack has no field inertia, that
curve neaw =0. once the trapping limit is exceeded and the crack can move,
it will achieve the equilibrium steady state immediately and
thereafter move at a fixed velocity. But if the crack has a
field inertia, which may be the case for a discrete lattice, then
In this paper we have addressed the question of how d is likely that the crack velocity will exhibit a transient
dynamic crack will approach zero velocity. There are twooscillation. Moreover, with such oscillations, if the cracked
quite different styles for setting boundary conditions on dy-lattice cannot support a crack motion less than some critical
namic cracks and they lead to very different results. In thevalue because of trapping, then the transient will die, even
strip case, the crack is in equilibrium with the waves return-though the lattice trapping limit is exceeded. This problem
ing from the boundariegbut not from its other tijg in the  could be explored by first preparing a crack in a steady-state
second, a single crack tip is in an effectively infinite me-motion and then lowering its load below the lattice trapping
dium. value into the regime it would not be able to achieve “from
The continuum boundary conditions for the strip modelbelow.” We suggest that such a hysteretic behavior should
generally do not include a radiation condition at infinity, andbe associated with a finite field inertia for the crack and that
this leads to a nonphysical prediction when the crack ighis in turn might be associated with a magnification of the
loaded above the Griffith value. But we show in a simplifiedvelocity regime denied the crack as it is loaded slowly from
version of the strip that when the medium can radiate itdelow its trapping value. Such a behavior might have been
accelerations, a steady-state velocity law is expected, whicbbserved in the simulations of Zhat al. [2] and Gumbsch
has a square-root behavior as a function of the excess loat al.[13], but the simulation results should be reaffirmed. In
over the Griffith load. This means that the steady-state veany event, we should point out that, for zero initial tempera-
locity increases with an infinite slope near zero overload, buture, it may be almost impossible to observe crack propaga-
otherwise in a smooth fashion with load. This fast increase ofion at very low velocities by molecular-dynamics simula-
the velocity near zero overload will of course make it diffi- tions simply because of the long times required to see the
cult to control the crack at slow velocity, but otherwise thelaunching of the crack.
low-velocity regime is well behaved. A further consideration for the problem of starting the
For infinite systems, the continuum theory predicts a ve<rack is to assess the role that any storage modes might play
locity law that approaches the sound velocity asymptote afif they exis). We commented on such a possibility in dis-
the inverse square of the logBq. (13)]. This velocity law  cussing the strip continuum problem. In that case such a
also grows faster near zero velocity than elsewhere, but istorage mode would be equivalent to the proposal made by

V. CONCLUSION
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Gao[16] that the upper limiting speed of the crack is in partvelocity waves for infinite wavelength, which is a special
determined by the locally diminished elastic wave speed ircase of Gao’s mechanism, but this is a very special feature of
the vicinity of the crack tip. If the crack moves faster thanthis model and thus not a general phenomenBnt for the

the local wave speed, then energy will build up, which will discrete crack, actual local modes might exist, which, mov-
lead to unstable behavior. But we would not expect such aing with the crack, could become excited and give rise to
effect to play a role in bunching energy near the crack tipmportant effects even at relatively low veloc[®]. This is a
when the velocity is near zero and below any locally dimin-mechanism that deserves additional study not only for its
ished wave speedWe noted in the 1D model of Sec. Il that role in the velocity law, but as a mechanism for generating
the special dispersive character of the model leads to zernmstabilities in the crack behavior.
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