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Crack limiting velocity
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We address the question of how a dynamic crack can approach zero velocity. Continuum theories usually do
not explicitly include the radiation of energy away from the crack tip. We show that its inclusion leads to the
prediction of crack velocity that increases smoothly~though sharply! from zero. We then connect an older,
simple model of crack propagation~‘‘atoms on rails’’! to a recently proposed single-particle model and show
how the disappearance of lattice trapping leads to a smooth low-velocity limit.@S1063-651X~97!00307-3#

PACS number~s!: 46.10.1z, 62.20.Mk, 61.72.Bb, 83.50.Tq
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I. INTRODUCTION

Recent discrete lattice and Barenblatt models of dyna
brittle cracks raise the question whether a crack velo
smoothly approaches zero as the load is decreased from
values to the Griffith point@1–3#. This problem is indepen
dent of crack behavior at the other end of the scale, wh
the upper limit of crack velocity appears to be associa
with instabilities caused by crack branching and dislocat
formation @1,2#. This low-end behavior is as interesting
that at the high end, however, because the standard
tinuum solution for a steady-state moving crack@4# makes
definite predictions about it. If a crack in a lattice exhib
unpredicted unstable behavior at the low end in contradic
to the continuum results, then one must explain how and w
the discrete lattice effects can be so important.

This paper addresses cracks in lattices, where it will
assumed that a unique cleavage plane is forced by the su
energy anisotropy of the lattice. Thus, because they ass
amorphous media with isotropic surface energy, the work
Ching, Langer, and Nakanishi@3# and Lund@5# are not di-
rectly relevant.

Expectations about the behavior of dynamic cracks
dominated by the boundary conditions of the proble
Marder and Gross@1# work in the strip geometry, wherea
the large-scale computer simulations@2# assume effectively
‘‘infinite’’ systems where the crack tip is not in communic
tion either with its other end or with boundaries in the sy
tem. The continuum predictions for these two geometries
quite different and will be summarized in Sec. II, where w
also present results for a continuum version of the o
dimensional~1D! discrete model of Marder and Gross@1#.
However, in each case, we are left with questions about h
the atomicity of the problem can explain observed deviati
from the continuum predictions.

The analytic description of dynamic fracture is quite a
struse and simulations of the ‘‘infinite’’ system require e
tensive programming and computer time. To surmount so
of this barrier to understanding the physical picture, it is o
purpose here to extend the kind of thinking already begu
an earlier paper@6#, where a very simple model was deve
561063-651X/97/56~1!/1071~9!/$10.00
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oped with which one could address the underlying mec
nisms of some of the dynamic crack physics without invo
ing the very complex machinery of the real thing. Here w
will present two additional simple discrete models that c
be studied completely analytically, one for each geome
These results will be presented in Secs. III and IV. A co
cluding discussion is presented in Sec. V.

II. CONTINUUM LIMIT AND BOUNDARY CONDITIONS

A. Strip geometry

In the first type of boundary condition, used extensive
by Marder and Gross, in both its theoretical and its expe
mental implementations, the system is a strip of finite wid
and infinite length with a semi-infinite crack running dow
its middle~on thex axis!. The strip is loaded on its edges i
‘‘fixed grips.’’ That is, the edges of the strip aty56L are
displaced by amount62u0 everywhere.~The factor of 2 has
no particular significance and is chosen for consistency w
later discussion.! This creates a constant strain in the strip
ahead of the crack tip for large positivex. It is usually as-
sumed that the strain far behind the crack is fully relea
and that the material there is again at rest for large nega
x. It is easily seen@4# that this system has only two stead
state velocities: zero and the Rayleigh speed. Liu and Ma
@7# have shown further that if one sets up such a system
the Griffith load and then at timet50 increases the load
slightly, the crack slowly increases its velocity from zero
the Rayleigh limit for all loads greater than the Griffith loa
These solutions, however, are built on the proposition t
the material far away from the crack tip, either ahead
behind it, is at rest.

The reasoning is as follows. Each vertical element
ahead of the crack contains a strain energy densityEe per
unit length along the center linex, given by the load. As the
crack grows by one atom spacing, the elastic energy of
vertical row of atoms through the strip is available to bre
the bonds. Thus Griffith equilibrium is set by the conditio

Ee52g. ~1!
1071 © 1997 The American Physical Society
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1072 56BRAD LEE HOLIAN AND ROBB THOMSON
Since the usual assumption is that the system relaxes c
pletely behind the crack with no time-dependent displa
ments, there is no way for excess energy to be absorbed
the crack has no stable velocity greater than zero.

But these boundary conditions, as stated, are inconsis
because if the load is above the Griffith value, then the
cess energy is available to generate waves behind~and in
front of! the crack. Physically, the material just behind t
crack tip that is released after bond breaking will acceler
toward its equilibrium position and kinetic energy in th
form of a wave will be generated to reflect back and fo
between the fixed boundaries aty56L, with excitation of
associated Rayleigh waves. Thus any excess energy ca
absorbed in these waves and again, from energy conserv
alone, a load-velocity law can be a smooth function of
load and go to zero smoothly as the load goes to the Gri
load. This demonstration does not prove that the velocity
is smooth in the vicinity of zero, only that energy conserv
tion is consistent with it.

But one can go further with a continuum version of t
1D discrete strip model introduced by Gross and Marder@1#.
In this simple model, we assume two infinitesimally thin st
foils connected to one another with a nonlinear stress fu
tion f (uy) and to substrates above and below, respectiv
with linear springs, such that each foil satisfies the followi
equation under time-independent static conditions:

05 f ~uy
0!1A

d2uy
0

dx2
1B~2u02uy

0!, ~2!

whereA is the stiffness coefficient in a foil andB is the
spring constant connecting the foil to the substrate. A cr
is assumed to exist between the two foils, so that under fi
grips load,uy

0(x) is the vertical displacement from the equ
librium position, relative to the centerline of the configur
tion, of the upper foil as a function of the distance along
strip andu0 is the displacement of the upper foil from i
equilibrium position relative to the centerline of the config
ration atx51`. Since the problem contains nox displace-
ment, henceforward, we drop the subscripty on theu’s. To
the left of the crack, the bonds are fully broken, sof goes to
zero atx52` and the foils relax to their equilibrium pos
tion relative to the substrates. The centerline is a line
symmetry in the problem, so the lower foil has a displa
ment of2u0(x) and atx51` far to the right of the crack
the upper substrate is displaced relative to the lower by
distance 4u0 from their equilibrium separations without load
~This assumes that the ‘‘spring’’ constant between the fo
for small displacement is half as stiff as that between
foils and the substrates.! For the time-dependent movin
crack problem, the equation of motion for one of the foils

05 f ~u!1A
]2u

]x2
1B~2u02u!2r

]2u

]t2
, ~3!

where nowu(x,t) is the time-dependent displacement of t
upper foil andr is the mass density in a foil.

We do not attempt a full-scale solution for this nonline
crack, which would perforce be numerical. Rather we fine
the analysis by making plausible physical assumptions in
attempt to gain information about the velocity law in th
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limit of small velocities. We first suppose that the sta
crack has a smooth solution given by the functionu0(x/w),
which is a functional of the nonlinear force lawu0$ f (y)%.
@The force function is obtained, of course, if the displac
ment function is known, by direct substitution into Eq.~3!.#
The displacement function is written so that it scales with
parameterw, which is interpreted as the width of the Bare
blatt cohesive zone of the crack.

At small velocities, the moving crack must be very clo
to a rigidly translating static crack and we thus assum
solution of the form

u~x,t !5u0S x2vt
w D1u1~x,t !, ~4!

where the second term is a perturbation from the~known!
uniformly translating static crack. After substitution into th
equation of motion and remembering thatu0 is a solution of
Eq. ~2!, u1 satisfies the equation

]2u1

]x2
2g~x!u12

1

c2
]2u1

]t2
5
v2

c2
d2u0

dx2
, ~5!

wherec25A/r. In this equation an expansion off is made,

f ~u!' f ~u0!1u1
d f~u0!

du0
1•••, ~6!

wheref (u0) andd f(u0)/du0 are known functions ofx once
the static solution is known. Theng(x) in Eq. ~5! is the
collected set of terms linear inu1 resulting from the substi-
tution in the equation of motion. Equation~5! is a homoge-
neous wave equation with a curious dispersion relation in
regions both far ahead and behind the crack and thus re
sents the radiated waves generated by the moving crac
the core, the source of the radiation is the term on the rig
hand side in Eq.~5!, which contains the coupling to th
translating cracku0 through its second derivative. Since th
source term is proportional to (v/c)2, the radiation is a smal
perturbation at small velocities, as desired. Of course,
must allow for special force laws for which the moving cra
is a soliton, wherein no radiation is generated, but if th
exist for this model, they are unusual cases and not con
ered further.

There is a problem with Eq.~5!, which is a special feature
of the 1D strip crack tied to a substrate. The term ing(x),
which derives ultimately fromf andB in Eq. ~3!, gives a
dispersive character to the waves such that the wave g
velocity for very long waves goes to zero. This means tha
crack with finite velocity would be supersonic, relative
some very long wavelengths. Thus, for the physical pict
to be valid, the moving crack must generate radiation w
wavelengths much shorter than the critical wavelength wh
the wave and crack velocities are equal. The effective
quency of a radiated wave will be given by the ratiov/w, so
for the physical picture to be valid, this ratio must be suf
ciently high. The catastrophe is avoided in the true limit
v→0 because of the factor (v/c)2 in the driving term on the
right-hand side of Eq.~5!: thus, in that limit, no radiation is
emitted. Having pointed out the problem, we ignore it in t
following by tacitly assuming that the core is always sha
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56 1073CRACK LIMITING VELOCITY
enough. The problem will also not be a feature of any sys
where the strip is sufficiently wide and properly 2D.

An equivalent way to consider the problem thus posed
to view the moving crack as generating a localized region
kinetic energy in its core. A part of this energy will mov
coherently with the crack, but part must be radiated in n
soliton cases. If the system is in steady state, then the ra
tion rate from the moving core must be a fixed fraction of t
total kinetic energy in the core. Since the kinetic energy
the rigidly translating crack is~note there are two foils!

T5rE
2`

`

u̇2dx5
rv2

w2 E
2`

` S du0~x!

dx D 2dx, ~7!

the energy balance at the crack core~in the Griffith sense!
becomes

Ee52g1C~w!
v2

w2 . ~8!

HereC is a constant, which depends on the form of the fo
law, but the major dependence onw has largely been re
moved by means of the assumed way the static crack sc
with w. Ee is the elastic energy density in the loaded a
stretched system far to the right of the crack.Ee is given by
the relation

Ee5
3

2
Bu0

2 ~9!

under the assumption noted above that the spring cons
between the foils is half that between the foils and the s
strates.

When Eq.~8! is inverted, the velocity law for the crac
becomes

v5wAEe22g

C~w!
. ~10!

This relation is obviously only valid in the low-velocity con
tinuum limit for steady-state velocityv and yields a nonsin-
gular behavior in the vicinity ofv50. It shows a square-roo
dependence on the excess load over the Griffith value
obeys all physical requirements in that for very wide coh
sive zones, the crack produces little radiated energy~when
thew dependence ofC is not too drastic!. Also, nearv50,
the slope of the velocity function is very steep because
crack must pick up significant velocity and kinetic ener
before radiation can be important.

We note that although the presentation here is quite g
eral, the physical assumption is made that a true steady
is achievable. It is this assumption that makes it possible
write the generalized Griffith relation, and if no such soluti
of Eq. ~5! is possible, then the whole physical picture
uniformly moving cracks breaks down. However, the gene
form of Eq. ~5! makes one optimistic that steady-state so
tions do exist for a wide class of force laws, and for all the
cases, then a velocity law of the form~10! is valid. We
believe the most probable violation of the steady-state cr
assumption would arise if storage modes for the mov
m
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crack can exist, but we believe these are more plausible
the crack in a discrete lattice and return to a discussion
this point in the Conclusion.

The reason for going through this 1D strip case, even w
its inadequacies, is that the physics that leads to the w
behaved limit at low velocity should be instructive in oth
cases where the analysis is even more intractible. Tha
when one can build first-order solutions out of the rigid
translating static crack, then the velocity law should be w
behaved in the zero-velocity limit and have the general ch
acter displayed by Eq.~10!. We have pointed out that viola
tions are expected if the crack can possess storage m
when it moves, but we believe these are probably not a
ture of the continuum.

B. Infinite 2D geometry

In the second boundary condition, the crack is assume
be long~or even semifinite in length! and to be embedded in
an infinite medium. In steady state, the load must be impo
in such a manner that the crack experiences a constan
pliedK field in the static limit. For actual cracks, these co
ditions may be difficult to achieve, but they can often
approached for finite lengths of time. It is required that the
be a time interval during which no communication is po
sible with the other end of the crack or with boundary s
faces. Also, any additional crack growth during the interv
must be small compared to the initial crack length. Limitin
times are set by the time for sound waves to reach the c
tip either from the other end of the crack or from the boun
aries. But even if these conditions are difficult to achieve
simulations or in experiment, mathematically, these bou
ary conditions lead to a well-posed problem, which has
ceived much attention. See the review by Freund@4#.

The result of the analysis is that the dynamic driving for
on the crackG is nearly linearly related to the crack drivin
force that would have been calculated from the loads for
crack if it were staticG0,

G5~12v/c!G0 , ~11!

wherev is the ~steady-state! velocity of the crack andc is
the Rayleigh surface wave speed in the system. This lin
relation is not strictly valid, but as an approximation,
‘‘good enough’’ for our purposes. Further, in this same s
tem, if the crack is in steady state, thenG is a constant of the
motion and theJ integral for the crack tip is independent o
the path of integration. This means thatG is the energy that is
absorbed at the crack tip by nonmechanical means, pres
ably by breaking the bonds there. Thus the steady-state
namic brittle crack also satisfies the Griffith relation

G52g, ~12!

which, in terms of the experimentally determined loadP, is

v
c

512
2g

G0~P!
. ~13!

For positivev, this relation shows that the velocity starts
zero for G052g and asymptotically builds toc for large
values ofG0. SinceG0}P2, the velocity curve is an increas
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1074 56BRAD LEE HOLIAN AND ROBB THOMSON
ing quadratic hyperbola as a function of the load. Thus,
the load drops from large values to the Griffith load, t
velocity goes smoothly to zero, according to the continu
theory with the ‘‘infinite’’ system boundary conditions.

The physical content of the solutions for either set
boundary conditions is straightforward. In the quasista
limit, as the crack grows, it absorbs energy from the load
systemG0 in just the amount necessary to break the bon
so the Griffith relation is simply a statement of energy co
servation. Likewise, in the dynamic case, as the crack gro
new material at rest ahead of the crack must be accelerat
an increasing kinetic energy behind the crack. In the s
case, waves are generated by the breaking bonds at the t
the infinite case, the crack opening behind the crack
creases from the tip with distance asAx, so as the crack
moves, more and more material is accelerated and the en
of the crack displacement field continuously increases
either case, this energy must come ultimately from the lo
system. Thus, in the case of a moving crack, the load sys
must supply a displacement field kinetic energy as well
bond breaking energy, and this means that additional loa
required to move the crack at a finite velocity over and ab
the Griffith load in the continuum limit. Thus this addition
dynamic energy is a smooth function of the crack velocity
least for velocities much less than the Rayleigh speed, wh
shock and relativistic effects are expected to occur.~This
argument is exactly that of Mott in his early treatment of t
moving crack@8,4#, which is valid in the low-velocity re-
gime.!

C. Discrete lattices

These continuum results are to be compared with the
sults for the analytic solutions given by Marder and Gro
@1# and to molecular-dynamics simulations@2,9–13#. We
consider first the strip.

The discrete 1D strip model developed by Marder a
Gross is the most transparent case to consider and the r
for the 1D bond snapping model is that all velocities in t
vicinity of zero are forbidden.~In the bond snapping force
law, the force functionf used above in the continuum analo
becomes a sharp saw tooth with infinite negative slop!
There are two reasons for this. First, velocities that hav
negative slope as a function of load are unstable and
allowed. Second, if the solution for small velocity is exam
ined carefully, it is found that the crack tip bond oscillat
from a bound to a broken state, which is inconsistent w
the assumed solution. The velocity must build to a signific
fraction of the Rayleigh velocity before the solution becom
regular. This solution for the discrete 1D strip model is
consistent with the continuum solution obtained above. T
snapping bond solution is sufficiently singular relative to t
smooth Barenblatt solution that it is impossible to make o
case the limit of the other. But one suspects that the sing
character of the snapping bond release is important, and
aspect will be explored in Sec. III.

How about the infinite system case? Zhouet al. @2# show
that when the crack system is loaded with care, the velo
builds quickly to a significant fraction of the Rayleigh velo
ity and runs smoothly for a long distance before it fina
becomes unstable. Although these results are incomple
s
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the sense that the strain is still increasing above the Grif
load after the crack starts to run, the initial velocity is qu
high and suggests that the crack resists motion at near
velocity. Indeed, if the strain rate is insufficient, the cra
velocity is unstable in the sense that the velocity surges
high value and then back to zero, with complete arrest of
crack. This behavior is suggestive that low-velocity cra
advance is unstable, although these simulations require
ther study with a variety of loading regimes near Griffith
order to explore adequately the stability of the crack at l
velocity. Thus, again~but with less confidence!, the lattice
results do not follow the continuum predictions.

The most important difference between the continu
and lattice descriptions is the existence of lattice trapping
the discrete case. Thus we will be interested in learning h
lattice trapping effects might bear on low-velocity instabi
ties. In particular, the analytic models of Marder and Gro
@1# assume bond snapping force laws that lead to very h
lattice trapping, which might reasonably be expected to p
a role. However, the large-scale simulations of Zhouet al.
@2# use much softer force laws, with lattice trapping loa
that are only a few percent of the Griffith load.

III. A SIMPLE LATTICE STRIP MODEL

Holian, Blumenfeld, and Gumbsch@6# have developed a
simple version of a strip crack with only a small number
atom rows~4,6,8, . . . ; seeFig. 1!. The idea is if the strip is
very narrow, then the crack degenerates into ‘‘pure core,’
which case only a few atoms are involved in crack grow
and the analysis is vastly simplified to only a few pairs
atoms. Here we take this idea one step further, to the s
where one can write down a fully analytic solution witho

FIG. 1. Schematic of a crack in a uniaxially strained~in the
vertical direction! triangular 2D lattice, which is six close-packe
rows of atoms from top to bottom. The crack-tip atom is unshad
the bond with its neighbor~shown moving down and to the right!
has just broken, sending the crack-tip atom up and to the right
bond with the next atom in line will be stretched and broken in tim
tbreak, so that this ‘‘iceskating’’ advances the crack one neare
neighbor distancer 0 in a time 2tbreak, with a steady-state crack
velocity of vcrack5r 0 /2tbreak.
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56 1075CRACK LIMITING VELOCITY
appealing to the full sophistication of the analysis invoked
Marder and Gross@1# for their 1D model. Since the physic
of such simple models is so transparent and yet still cont
the essence of the behavior of the more complex syst
they are worth pursuing. In particular, we will develop
prediction of the crack velocity in terms of the bonding at t
tip.

In order to connect well with the model in Sec. IV, w
outline a simplified model for 2D fracture, namely, ‘‘atom
on rails,’’ where the atomic motion is restricted to be o
thogonal to the crack plane~line in two dimensions!. The
atoms are placed on a rectangular lattice~shown in Fig. 2!
and labeled by the integeri in the x direction ~crack propa-
gation direction; the lattice constant is unity! and j in the y
direction~applied load or strain direction; the lattice consta
is 11e, where e is the vertical strain in the lattice!. The
positions of atoms in the vertical direction are denoted
Yi , j and displacements of atoms from these rectangular
tice sites are denoted byyi , j . The compressive neares
neighbor interaction between atoms in the vertical direct
is characterized by a central pair potent
f(uYi , j2Yi , j61u); for simplicity, we setf(1)505f8(1)
and f9(1)51 ~in tension, we can impose a discontinuo
snapping-bond potential or a smooth cutoff, if we choos!.
There is no motion in thex direction, but a linear bending
force is applied between nearest neighbors with the s
value of j , with bond-bending force constantB. Thus the
force on atomi , j is given by

f i , j5f8~ uYi , j2Yi , j11u!2f8~ uYi , j2Yi , j21u!

1B~yi11,j22yi , j1yi21,j !. ~14!

We can simplify the problem by imagining that the cra
propagates in a strip four rows high, where the top and b
tom rows of atoms are fixed and the middle two rows are f
to move. By assuming that the motion of these two rows
mirror symmetric about the crack plane, we can reduce
crack propagation problem even further, namely, to the
namics of a one-dimensional chain. Atomsi are located
above the mirror plane (Y50) at Y5yi1(11e)/2, with
mirror image particles at2Yi , and fixed neighbors above

FIG. 2. Schematic of a square 2D lattice with a crack. T
lattice points are allowed to displace only in the vertical orY direc-
tion ~‘‘atoms on rails’’!. The force laws are composed of neare
neighbor stretching forces and nearest-neighbor bending bond
given in the text. The crack is formed by cutting the stretch
bonds on the cleavage plane fromX52L to X51L and nonlinear
bonds attached to the last cut bond. The force in the nonlinear b
is f and the forces loading the crack at its center areF.
y

s
m,

t

y
t-

n
l

e

t-
e
s
e
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located atY53(11e)/2. Thus, in terms of vertical displace
mentsyi along the chain, the force on atomi is now given by

f i5f8~11e2yi !2f8~11e12yi !1B~yi1122yi1yi21!.
~15!

The equation of motion is thenm(d2yi /dt
2)5 f i for

i50,61,62, . . . .
We can introduce a mirror-symmetric crack of leng

2L11 by specifying that particlesi52L to 1L have dis-
placementyi5e and for all othersyi50. For all particles
except L and L11, the force is zero, assuming th
f8(113e)50 ~broken bond between mirror-image par
ners!; f L52Be and f L1151Be. ~By an iterative relaxation
process, we can make the crack tip assume an equilibr
zero-force initial configuration. However, for a dynam
crack moving at a steady-state velocity, this nonequilibriu
crack-tip force field is probably not too far from reality.!

We can now propose a single-particle Einstein model
the steadily propagating crack. By this we mean that we
calculate the steady crack velocity by assuming that
crack-tip atomL11 moves under the influence of its fixe
neighbor in the row above and its immobilized neighbo
behind (L) and forward (L12). Thus the force on the Ein
stein atom (L11) is ~dropping the atom number for simplic
ity!

f5f8~11e2y!2f8~11e12y!1B~e22y!. ~16!

Sincey(t50)50, the force on the atom is initially upward
f5Be. We record the timetbreak it takes to break the bond
between the Einstein atom and its mirror image; the cr
will then have advanced by one lattice spacing, so that
crack velocity is

vcrack5
1

tbreak
. ~17!

If we linearize the potentialf such thatf8(11y)5y, then

f52~312B!y1Be52v2~y2y0!; ~18!

hence

v25312B,

y05
B

312B
e. ~19!

At the critical lattice-trapping strainecrit , the bond be-
tween the Einstein atom and its mirror-image partner is b
ken when the maximum interaction rangermax is

rmax511ecrit12~2y0!→ecrit5~rmax21!
312B

316B
.

~20!

The Einstein model for atoms on rails predicts a zero stea
state crack velocity for strains below this lattice-trappi
value; for strains just above this, the velocity starts at
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vcrit5
1

t/2
5v/p5

A312B

p
. ~21!

The Griffith straineG for a systemw rows of atoms wide
is obtained from equating the elastic strain energy far in fr
of the crack to the energy of the relaxed system with a b
ken bond across the cleaved surface far behind the crack

~w21!f~11eG!5f~rmax!→eG5
rmax21

Aw21
~harmonic!

→
ecrit
eG

5
312B

316B
A3 ~ for w54!. ~22!

For strains that are not too large compared to the Grif
value, the above harmonic analysis can be extended to ob
the crack velocity as a function of strain. The motion in t
harmonic well can then be written as

y~ t !5y0~12cosvt !, ~23!

so that

vcrack5
v

cos21@12~rmax212e!/2y0#
. ~24!

In the triangular lattice, this single-particle Einstein mod
exhibits two phases in the forward motion of the crack: fi
a movement toward one side of the crack and then a mo
ment toward the other side, hence the name ‘‘Einstein
skater’’ model. The analysis proceeds similarly to the mo
outlined here in the square lattice, where we have tra
formed the bond-breaking motion into a single mirro
symmetric phase that is perpendicular to the crack propa
tion direction. The result for the triangular lattice is

vcrack
cs

5
4

3cos21~524A3eG /e!
, ~25!

whereecrit /eG52/A3 andvcrit /cs54/3p50.424 (cs is the
shear-wave speed in the triangular lattice, which is also v
close to the Rayleigh-wave speed!.

The conclusions we get from these simplifications
steady-state crack propagation are~1! there is lattice trapping
in narrow strips, and~2! the velocity quickly jumps from
zero to a sizable fraction of the shear-wave or Raylei
~surface! wave speed. Numerical modeling is required f
anharmonic interactions, and the result is a reduction of
crack speed, even for anharmonic systems with sound sp
identical to those of their harmonic-system counterparts.
reduction comes about because of the softening of the e
tive force constant in the expansion~beyond the attractive
minimum of the pair potential!. With increasing strain, ove
and above the Griffith value and the somewhat higher latt
trapping value, the harmonic-system crack velocity quic
approaches the shear-wave speed, while the anharmonic
tems show much more gentle variation with increas
strain. This feature too is a result of the softening of t
attractive forces in expansion. All in all, these simple mod
of steady crack propagation contain significant insight i
the physics of dynamic brittle fracture.
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IV. A SIMPLE INFINITE LATTICE CRACK MODEL

In this section we revisit the atoms-on-rails model of
crack moving in an infinite system. We are not able to d
velop a fully dynamic solution, but rather show that one c
construct a lattice model that has zero lattice trapping
demonstrate that such a crack has a smooth transition f
zero to small finite velocities. We do this by showing that
is possible to choose a special set of bonding forces at
crack tip, which leads to the desired crack property. T
model is based on an extension of earlier work on quasist
cracks analyzed by lattice Green’s functions@14#. The nota-
tion is the same as in Sec. III; however, the lattice is infin
in both dimensions. The atoms are on the square lattice s
denoted by (i , j ) with i and j integers. The crack is con
structed by cutting the bonds crossing the cleavage p
between the planes (i ,0) and (i ,21) with the crack tips~last
cut bond! at (x56L). See Fig. 2. The lattice is connected b
the same linear force law as before with both stretching
bending springs@Eqs. ~14! and ~18!# with the stretching
spring constant chosen to be unity for convenience. T
crack is loaded by external forces6F exerted on the atoms
facing one another across the cleavage plane atx50.

Nonlinearity is introduced into the problem by reconne
ing the last pair of broken atoms at the crack tip with
stretching bilinear force law of the form

2 f L52yL , yL,y0 ~26a!

2 f L52 f 02k~yL2y0!, y1.yL.y0, ~26b!

whereyL is the vertical displacement of the atom at (L,0)
and it is assumed that the~vertical! displacements in the
lattice are mirror symmetric across the cleavage plane ev
where. Thus, from Eq.~14!, the linear part of the stretching
force on the atom at the crack tip due to the reattached bo
in the two-index notation of the 2D lattice, is given b
2 f5(yL,02yL,21)52yL,052yL , which explains the factor
2 in Eq. ~26a!. Similar considerations apply to the relea
part of the force, wherey1.yL.y0. The linear form of the
bending bonds is not affected by the crack, of course.

Analysis of the cracked lattice proceeds by means of
lattice Green’s functions that have been worked out for t
lattice @14#. Since we will only use applied load forces e
erted as vertical dipoles on nearest neighbor atoms, ins
of the Green’s functions, we define the related response fu
tions for the cracked lattice as follows. The response funct
gi j corresponds to the displacement at atom position (i ,0) on
the upper cleavage plane for a point force acting at the
sition (j ,0) on the upper cleavage plane in a positivey di-
rection and an equal negative force at the atom on the
just below it on the lower cleavage plane at (j ,21). It is
necessary to define the response functions only for the at
on the upper side of the cleavage plane at position (i ,0).
With these response functions for the system, if a load dip
is applied at the center of the crackF and a second bonding
dipole force f is applied at the atom pair located atL ~see
Fig. 2!, then the response of the total system can be writ
in terms of the displacements and forces acting on the at
at x50,L:

Y05g00F1g0L f , ~27a!
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yL5gL0F1gLL f , ~27b!

yL115gL11,0F1gL11,L f . ~27c!

Figure 3 is a graph of the displacement of the center a
of the crack as a function of the load forceF. As the force
F is increased from zero, the cracked lattice responds
early, as shown for crack lengthL. But when the atom atL
reaches the critical valuey0, according to the force law, i
begins to release and the response of the system cha
abruptly. The figure shows a flat response, but in genera
slope will be some nonzero value, depending on the cr
length and the value ofk. We define the condition of zero
lattice trapping to be that shown, with the zero slope. T
second linear line through the origin corresponds to a lin
cracked lattice of lengthL11 and we assume that the forc
at the crack tip act in such a way that exactly when
horizontal line meets the response line forL11, the force in
the bond atL goes to zero and the force in the bond
L11 is at the critical valuef 0, where the bond begins it
release phase. Thus, as the crack grows from one lattice
sition to the next, it always has exactly one atom at the tip
its ‘‘core,’’ defined asy1.y.y0. For this assumption to be
valid, as the crack grows from one atom position to anoth
the crack tip atoms must smoothly execute a ‘‘dance’’ alo
the force law so that as the atom atL11 reaches the critica
value y0 the atom atL must simultaneously reach the ne
critical displacementy1. In the figure, the state labeled
corresponds to the atom atL reachingy0, while state 2 cor-
responds to the same atom reachingy1 and simultaneously

FIG. 3. Two straight lines through the origin, corresponding
the response of a fully linear lattice~no nonlinear bonds! for cracks
of half lengthL andL11. The ordinate is the loadF applied to the
center of the crack and the abscissa is the displacementy0 of the
atom at the center of the crack. If the atoms have a bilinear fo
law, then for a crack of half lengthL, as the bond at the tip extend
it reaches the limit of its linear portion aty0 at the point in the
diagram labeled 1 and further extension occurs on its ‘‘back sid
When the bond at the tip is extending on the back side, the resp
function is assumed to be flat, until the bond finally breaks at
same time as the response curve meets the linear lattice fun
again forL11 at the point labeled 2.
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the atom atL11 reachingy0. Thus, as the system progress
from 1 to 2, the crack grows from one lattice site the ne
Such a cracked lattice has a flat response curve and
exhibits zero lattice trapping. This condition is obviously
stringent one, which will be analyzed below. In passing,
note that if the atom atL is in the flat portion of the force law
and the other conditions are also satisfied, the Griffith c
dition for the crack will be satisfied.

The ~total! energy changes that occur when the cra
grows from state 1 to state 2 in Fig. 3 is given by

dE5E
1

2

Fd~2y0!2FD~2y0!, ~28!

where the first term is the work done by the external force
it displaces the atom pair at the center of the crack. T
second term is the potential-energy change in the load
tem that supplies the load. If the response of the system
flat from state 1 to state 2, as drawn in Fig. 3, then the ene
changedE50 because the first term exactly cancels the s
ond. Thus a flat response from 1 to 2, defined as a stat
zero trapping, is also a state where there are no atomic s
excursions in the energy of the system during quasist
crack growth, an essential physical attribute of the zero tr
ping system.

From Eq. ~27b!, dyL5gL0dF1gLLd f5gLLd f . (dF50
when the response is flat.! From the force law~26b!,
d f /dy5k and

k5
1

gLL
. ~29!

Although the criterion~29! ensures that the response
the system is flat, it must be supplemented by a s
consistency condition that the force law ‘‘hands off’’ th
core atom from one site to the next such that there is alw
one and only one atom in the release or ‘‘back side’’ porti
of the force law at all times. That is, the atom atL reaches
the displacementyL5y1 at the same time the atom a
L11 reaches the displacementyL115y0. Sincey

1 is de-
fined from the force law by2 f5052 f 02k(y12y0)
52y02k(y12y0), then y15(k12)y0 /k. Then, from
Eq. ~27b!, and sincef50 at the point where the crack move
from one site to the next,

y15
k12

k
y05gL0F. ~30!

Likewise, from Eq.~27c! we have

yL115y05gL11,0F, ~31!

where we have again used the fact thatf50 at the point
where the crack moves from one site to the next. Solving
F from these two equations and substituting fork from Eq.
~29!, we obtain the final result

gLL5
1

2S gL0
gL11,0

21D . ~32!

This condition is written in a form to emphasize the fact
gL0 /gL11,0, which is always greater than 1. Physically, th
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ratio must be greater than 1 because the Green’s-func
elements are proportional to the displacements for any a
in the linear cracked lattice before the nonlinear bonds
reattached. That the crack closes smoothly at the tip me
that this ratio must be greater than 1.

We find that from direct calculations of the variou
Green’s functions, Eq.~32! is identically satisfied for all val-
ues of the bending spring constantB. Unfortunately, we have
not been able to deduce this remarkable result analytic
from the form of the Green’s functions@14#. But the result
implies that self-consistency is automatically satisfied if
back side of the force law is set so that the force in the b
at L goes to zero when the bond atL11 is stretched to
2y0. ~The factor of 2 reflects the antisymmetry of the d
placements below the crack plane.!

In summary, in such a system, a crack can grow smoo
from one atom spacing to the next without any ene
changes except those that smoothly feed energy from
loading system and the elastic regions of the lattice i
breaking the core bond. No additional energy is generate
this system. One could use the Mott approach to derive
approximateK/v law in the low-velocity regime, as we did
in Eqs.~5! and~6!. Such a crack would grow smoothly from
zero velocity at the Griffith load. We note that for a cra
loaded a finite increment over the Griffith load, the smoo
zero trapping property begins to break down, because
construction is valid only exactly at the Griffith load. Abov
the Griffith value, some additional energy is dumped into
lattice over and above that necessary to move the z
trapped crack. But since the trapping energy increa
smoothly with the load, nothing dramatic happens. T
K/v law should merely turn up a little above the continuu
curve nearv50.

V. CONCLUSION

In this paper we have addressed the question of ho
dynamic crack will approach zero velocity. There are tw
quite different styles for setting boundary conditions on d
namic cracks and they lead to very different results. In
strip case, the crack is in equilibrium with the waves retu
ing from the boundaries~but not from its other tip!; in the
second, a single crack tip is in an effectively infinite m
dium.

The continuum boundary conditions for the strip mod
generally do not include a radiation condition at infinity, a
this leads to a nonphysical prediction when the crack
loaded above the Griffith value. But we show in a simplifi
version of the strip that when the medium can radiate
accelerations, a steady-state velocity law is expected, w
has a square-root behavior as a function of the excess
over the Griffith load. This means that the steady-state
locity increases with an infinite slope near zero overload,
otherwise in a smooth fashion with load. This fast increase
the velocity near zero overload will of course make it dif
cult to control the crack at slow velocity, but otherwise t
low-velocity regime is well behaved.

For infinite systems, the continuum theory predicts a
locity law that approaches the sound velocity asymptote
the inverse square of the load@Eq. ~13!#. This velocity law
also grows faster near zero velocity than elsewhere, bu
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much better behaved than that for the strip.
In the two different geometries, we have introduced tw

simple lattice crack models where the atoms are free to m
only in the direction normal to the crack plane~atoms on
rails!. In the strip, the lattice contains only two rows of mo
able atoms, with the crack running between the two ro
Analytic results are possible for bond-snapping linear fo
laws and the velocity is nonzero only above a critical velo
ity, which depends on the lattice trapping level. For fu
nonlinear force laws, numerical results are easily calcula
which show that as the lattice trapping is decreased, the c
cal velocity also decreases towards zero. Thus the crit
velocity observed previously in strip models is purely a fun
tion of the lattice trapping, and as the trapping is decreas
the crack reverts to the behavior predicted by the continu
model.

In the infinite lattice, we have shown that with the sam
atoms on rails it is possible to find a bilinear force law th
has strictly zero lattice trapping and that as the load is
creased above the Griffith value this lattice again exhibit
smooth increase above zero velocity. Thus, in both ca
any critical velocity observed is associated with lattice tra
ping.

The paper addresses the problem of the steady-state
locity of a crack and leaves the question of how a crack t
is initially at rest might achieve its steady state if there
lattice trapping. In this case, the crack must be overloa
above the Griffith value before any state of motion is po
sible at all. This is the problem so aptly dubbed ‘‘starting t
crack’’ by Eshelby@15#. According to the continuum solu
tions, we would expect, if the crack has no field inertia, th
once the trapping limit is exceeded and the crack can mo
it will achieve the equilibrium steady state immediately a
thereafter move at a fixed velocity. But if the crack has
field inertia, which may be the case for a discrete lattice, th
it is likely that the crack velocity will exhibit a transien
oscillation. Moreover, with such oscillations, if the cracke
lattice cannot support a crack motion less than some crit
value because of trapping, then the transient will die, e
though the lattice trapping limit is exceeded. This proble
could be explored by first preparing a crack in a steady-s
motion and then lowering its load below the lattice trappi
value into the regime it would not be able to achieve ‘‘fro
below.’’ We suggest that such a hysteretic behavior sho
be associated with a finite field inertia for the crack and t
this in turn might be associated with a magnification of t
velocity regime denied the crack as it is loaded slowly fro
below its trapping value. Such a behavior might have be
observed in the simulations of Zhouet al. @2# and Gumbsch
et al. @13#, but the simulation results should be reaffirmed.
any event, we should point out that, for zero initial tempe
ture, it may be almost impossible to observe crack propa
tion at very low velocities by molecular-dynamics simul
tions simply because of the long times required to see
launching of the crack.

A further consideration for the problem of starting th
crack is to assess the role that any storage modes might
~if they exist!. We commented on such a possibility in di
cussing the strip continuum problem. In that case suc
storage mode would be equivalent to the proposal made
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Gao@16# that the upper limiting speed of the crack is in pa
determined by the locally diminished elastic wave speed
the vicinity of the crack tip. If the crack moves faster th
the local wave speed, then energy will build up, which w
lead to unstable behavior. But we would not expect such
effect to play a role in bunching energy near the crack
when the velocity is near zero and below any locally dim
ished wave speed.~We noted in the 1D model of Sec. II tha
the special dispersive character of the model leads to
ev

.

v

t
n

n
p
-

ro

velocity waves for infinite wavelength, which is a spec
case of Gao’s mechanism, but this is a very special featur
this model and thus not a general phenomenon.! But for the
discrete crack, actual local modes might exist, which, m
ing with the crack, could become excited and give rise
important effects even at relatively low velocity@2#. This is a
mechanism that deserves additional study not only for
role in the velocity law, but as a mechanism for generat
instabilities in the crack behavior.
ks
this
the

es.
@1# M. Marder and S. Gross, J. Mech. Phys. Solids43, 1 ~1995!.
@2# S. Zhou, P. Lomdahl, R. Thomson, and B. Holian, Phys. R

Lett. 76, 2318~1996!.
@3# E. S. C. Ching, J. S. Langer, and H. Nakanishi, Phys. Rev

52, 4414~1995!.
@4# L. B. Freund,Dynamic Fracture Mechanics~Cambridge Uni-

versity Press, Cambridge, 1990!.
@5# F. Lund, Phys. Rev. Lett.76, 2742~1996!.
@6# B. L. Holian, R. Blumenfeld, and P. Gumbsch, Phys. Re

Lett. 78, 78 ~1997!.
@7# X. Liu and M. Marder, J. Mech. Phys. Solids39, 947 ~1991!.
@8# N. F. Mott, Engineering165, 16 ~1948!.
@9# W. T. Ashurst and W. G. Hoover, Phys. Rev. B14, 1465

~1976!.
.

E

.

@10# K. Sieradzki and R. Li, Phys. Rev. Lett.67, 3042~1991!.
@11# B. L. Holian and R. Ravelo, Phys. Rev. B51, 11 275~1995!.
@12# F. Abraham, D. Broderick, and R. Rafey, Phys. Rev. Lett.73,

272 ~1994!. Note that Abraham and co-workers studied crac
propagating orthogonally to the natural cleavage direction;
introduces instabilities into the process that are beyond
scope of our treatment here.

@13# P. Gumbsch, S. J. Zhou, and B. L. Holian, Phys. Rev. B55,
3445 ~1997!.

@14# R. Thomson, V. Tewary, and K. Masuda-Jindo, J. Mater. R
2, 619 ~1987!.

@15# J. D. Eshelby, inPhysics of Strength and Plasticity, edited by
A. Argon ~MIT Press, Cambridge, MA, 1969!, p. 263.

@16# H. Gao, J. Mech. Phys. Solids44, 1453~1996!.


